Journal of Organometallic Chemistry, 86 (1975) 243–251 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

THE CHEMISTRY OF SOME METALLOBORANE DERIVATIVES HAVING IRON–BORON SINGLE BONDS

FUMIE SATO, TAKAKAZU YAMAMOTO, JOHN R. WILKINSON and LEE J. TODD* Department of Chemistry*, Indiana University, Bloomington, Indiana 47401 (U.S.A.)

(Received September 10th, 1974)

Summary

Reaction of $[(\eta^5-C_5H_5)Fe(CO)_2(cyclohexene)]PF_6$ with $B_{10}H_{13}^-$ and 7,8-B₉C₂H₁₂⁻ forms 6- $[(\eta^5-C_5H_5)Fe(CO)_2]B_{10}H_{13}$ and $(\eta^5-C_5H_5)Fe(CO)_2$ -(7,8-B₉C₂H₁₂) respectively which have iron—boron single bonds. The reactions of these compounds with bromine and with Lewis bases such as trialkylamines, CH₃CN and Ph₃P are described.

Introduction

We have recently reported the syntheses of a number of new heteroatom borane metal complexes formed by reaction of cationic transition metal complexes of molydenum and iron with heteroatom borane anions [1]. This paper describes the syntheses and some chemistry of the complexes 6-[$(\eta^5-C_5H_5)Fe-$ (CO)₂]B₁₀H₁₃ and $(\eta^5-C_5H_5)Fe(CO)_2B_9H_{10}C_2R_2$ (R=H, CH₃).

Experimental

General comments

Boron (¹¹B) NMR (Table 3, at 70.6 MHz) and ¹H NMR spectra (Table 2) were obtained with a Varian HR-220 spectrometer. The boron spectra were externally referenced to BF₃ · O(C₂H₅)₂. The ¹³C NMR spectrum was obtained with a Varian XL-100-15 spectrometer operating in the pulsed Fourier transform mode at 25.1 MHz. The ¹³C chemical shifts were measured relative to internal acetone and reported relative to tetramethylsilane using the conversion factor $\delta(TMS) = \delta[(CH_3)_2CO] + 30.43$ ppm.

Elemental analyses (Table 1) were performed by Schwarzkopf Microanalytical Laboratories, Woodside, New York or Midwest Microanalytical Laboratories, Indianapolis, Indiana. Infrared spectra (Table 4) were recorded

* Contribution No. 2554.

TABLE	1
LADSE	÷.

CHEMICAL ANALYSES

Compound	Analysis found (caled.) (%)		
	С	Н	
6-[(7 ⁵ -C ₅ H ₅)Fe(CO) ₂]B ₁₀ H ₁ 3 (1)	28.0	5.9	
	(28.2)	(6.0)	
(η ⁵ -C ₅ H ₄ B ₁₀ H ₁₃)Fe(CO) ₂ Br (II)	22.8	4.6	
	(22.3)	(4.5)	
(η ⁵ -C ₅ H ₅)Fe(CO) ₂ [7,8·B ₉ H ₁₀ C ₂ (CH ₃) ₂] (IV)	35.2	6.0	
	(34.8)	(5.5)	
(7 ⁵ -C ₅ H ₅)Fe(CO) ₂ [7,8·B ₉ H ₁₀ C ₂ (CH ₃) ₂](IV)	39.1	6.2	
	(39.3)	(6.3)	
(CH ₃) ₄ N[(η ⁵ -C ₅ H ₅)Fe(CO) ₂ (7.8-B ₉ C ₂ H ₁₁)](V)	39.9	7.9	
· · · · · · ·	(40.7)	(7.3)	
[(7 ⁵ -C ₅ H ₅)Fe(CO) ₂ CH ₃ CN](7,8-B ₉ C ₂ H ₁₂) (VI)	37.2	5.9	
	(37.3)	(5.7)	
[(7 ⁵ -C ₅ H ₅)Fe(CO)(CNC ₆ H ₁₁) ₂](7,8-B ₉ C ₂ H ₁₂) (VII)	51.9	7.4	
	(52.8)	(7.8)	

as KBr disks using a Perkin—Elmer 137-G instrument. Low resolution mass spectra were obtained with an Atlas CH-7 instrument.

Starting materials

Dicarbonyl(cyclohexene)cyclopentadienyliron hexafluorophosphate was prepared by the method of Fischer and Moser [2]. The synthesis of $[(\eta^5-C_5H_5)-Fe(CO)_2CH_3CN]PF_6$ was accomplished employing the procedure of Williams and Lalor [3]. The procedure of Hawthorne and coworkers was used to prepare $(CH_3)_3NH[7,8-B_9C_2H_{12}]$ [4].

TABLE 2

^IH NMR SPECTRA

.

Compound	Chemical shift 7 (ppm)	Assignment	
I	4.94, singlet	C ₅ H ₅ group	
	11.60, broad singlet	B—H—B bndge hydrogens	
ц	4.33, triplet 5.45, triplet	substituted C5H5 group	
ш	4.42, singlet	C ₅ H ₅ group	
	7.78, broad singlet }	carborane CH groups	
	13.42, broad singlet	B—H—B bridge bydrogens	
īv	4.40, singlet	C ₅ H ₅ group	
	8.49, singlet }	CH ₃ groups	
	12.92, broad singlet	B—H—B bridge hydrogens	
v	5.35, singlet	C ₅ H ₅ group	
	6.63, singlet	N(CH ₃) ₄ group	
	10.28, broad singlet	B—H—B bndge hydrogen	

TABLE 3

11B NMR SPECTRA (70.6 MHz)

$ \frac{(ppm (f, Hz))}{f^{4}} = \frac{(ppm (f, Hz))}{doublet} = -10.8 \\ (doublet -11.9 (150) 2 \\ (doublet -11.9 (150) 2 \\ (doublet -0.7 (150) 4 \\ (doublet -0.7 (150) 4 \\ (doublet -0.7 (150) 1 \\ (doublet -0.7 (150) 1 \\ (doublet -0.7 (150) 2 \\ (doublet -0.7 (150) 1 \\ (doublet -0.7 (150) 2 \\ (doublet -0$	Compound	Feature	Chemical shift	Relative	
$r^{a} \qquad singlet & -40.8 & 1 \\ doublet & -11.9 (150) & 2 \\ doublet & -7.2 (160) & 1 \\ doublet & 30.5 (150) & 1 \\ doublet & 30.5 (150) & 1 \\ doublet & 30.5 (150) & 1 \\ doublet & -33.2 (150) & 2 \\ doublet & -11.8 (140) & 3 \\ doublet & -3.3 (150) & 2 \\ doublet & 29.3 (150) & 1 \\ doublet & 29.3 (150) & 1 \\ doublet & 35.1 (151) & 1 \\ II^{a} & doublet & 1.8 (150) & 1 \\ doublet & 9.8 (150) & 1 \\ doublet & 21.4^{c} & 1 \\ doublet & 21.4^{c} & 1 \\ doublet & 33.6^{c} & 1 \\ doublet & 33.6^{c} & 1 \\ doublet & 34.8 & 1 \\ IV^{a} & doublet & 3.8^{c} & 1 \\ doublet & 6.0^{c} & 1 \\ doublet & 6.0^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 16.6^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 22.4^{c} & 1 \\ doublet & 33.3^{c} & 1 \\ doublet & 35.0 (140) & 1 \\ VI^{a} & doublet & 10.5 (135) & 2 \\ doublet & 16.4 (115) & 3 \\ doublet & 16.4 (115) & 1 \\ doublet & 37.4 (130) & 1 \\ \end{array} \right$			(ppm (J, Hz))	area	
$V^{d} = \begin{cases} -11.5 (150) & 2 \\ doublet & -17.2 (160) & 1 \\ doublet & -7.2 (160) & 1 \\ doublet & 30.5 (150) & 1 \\ doublet & 30.5 (150) & 1 \\ doublet & 30.5 (150) & 1 \\ doublet & -11.8 (140) & 3 \\ doublet & -11.8 (140) & 3 \\ doublet & -3.1 (50) & 2 \\ doublet & 29.3 (150) & 1 \\ doublet & 29.3 (150) & 1 \\ doublet & 9.8 (150) & 1 \\ doublet & 9.8 (150) & 1 \\ doublet & 21.4^{c} & 1 \\ doublet & 21.4^{c} & 1 \\ doublet & 24.0 (150) & 2 \\ doublet & 33.6^{c} & 1 \\ amplet & 34.8 & 1 \end{cases}$ $IV^{d} = \begin{cases} doublet & 16.6^{c} & 1 \\ doublet & 9.6 (170) & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 23.6 (140) & 2 \\ doublet & 16.6^{c} & 1 \\ doublet & 33.3^{c} & 1 \\ doublet & 33.3^{c} & 1 \end{cases}$ $V^{b} = \begin{cases} singlet & -1.4 & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 23.6 (140) & 2 \\ doublet & 15.1^{c} & 1 \\ doublet & 23.6 (140) & 2 \\ doublet & 20.3^{c} & 1 \\ doublet & 28.9 (130) \\ doublet & 37.4 (130) & 1 \end{cases}$	r ^a	singlet		1	
V^{a}		doublet	-11.9 (150)	2	
$V^{d} = \begin{cases} doublet & -0.7 (150) & 4 \\ doublet & 30.5 (150) & 1 \\ doublet & 30.5 (150) & 1 \\ doublet & 30.5 (150) & 1 \\ doublet & -1.8 (140) & 3 \\ doublet & -3.3 (150) & 2 \\ doublet & 2.9.3 (150) & 1 \\ doublet & 29.3 (150) & 1 \\ doublet & 29.3 (150) & 1 \\ doublet & 9.8 (150) & 1 \\ doublet & 17.4^{c} & 2 \\ doublet & 21.4^{c} & 1 \\ doublet & 24.0 (150) & 2 \\ doublet & 33.6^{c} & 1 \\ doublet & 6.0^{c} & 1 \\ doublet & 6.0^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 33.3^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 22.6 & 1 \\ doublet & 33.3^{c} & 1 \\ \\ V^{b} & singlet & -1.4 & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 21.5 (140) & 2 \\ doublet & 21.5 (140) & 1 \\ \\ V^{l} & doublet & 10.5 (135) & 2 \\ doublet & 16.6 (140) & 1 \\ V^{l} & doublet & 10.5 (135) & 2 \\ doublet & 15.1 & 1 \\ doublet & 16.4 (115) & 3 \\ doublet & 15.1 & 1 \\ doublet & 36.0 (140) & 1 \\ \end{array}$		doublet	-7.2 (160)	1	
$V^{b} \begin{array}{c} doublet & 30.5 (150) & 1 \\ doublet & 38.2 (150) & 1 \\ doublet & -11.8 (140) & 3 \\ doublet & -11.8 (140) & 3 \\ doublet & -3.3 (150) & 2 \\ doublet & 1.7 (150) & 2 \\ doublet & 29.3 (150) & 1 \\ doublet & 29.3 (150) & 1 \\ doublet & 29.3 (150) & 1 \\ doublet & 9.8 (150) & 1 \\ doublet & 21.4^{c} & 1 \\ doublet & 21.4^{c} & 1 \\ doublet & 24.0 (150) & 2 \\ doublet & 33.6^{c} & 1 \\ sunglet & 34.8 & 1 \\ \\ V^{d} & \begin{array}{c} doublet & 3.8^{c} & 1 \\ doublet & 9.6 (170) & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 33.3^{c} & 1 \\ \end{array} \right.$ $V^{b} & \begin{array}{c} singlet & -1.4 & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 22.6 & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 20.3^{c} & 1 \\ \end{array} $		doublet	0.7 (150)	4	
$\mathbf{I}^{b} \qquad \begin{array}{c} \begin{array}{c} \sin \left[1 \\ \cos \left(1 \right) \right) \right) \right) \right] \right] \right] \right) \\ \mathbf{V}^{b} \qquad \begin{array}{c} \left[\sin \left[1 \\ \sin \left(1 \\ \cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \right) \right) \right) \right] \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\sin \left[1 \\ \cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \right) \right) \right] \right] \right] \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\sin \left[1 \\ \cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \right) \right) \right] \right] \right] \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\sin \left[1 \\ \cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \right) \right) \right] \right] \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\sin \left[1 \\ \cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \right) \right] \right] \right] \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\sin \left(1 \\ \cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \right) \right) \right] \right] \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \right) \right) \right] \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \right) \right] \right] \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \right) \right] \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \right) \right] \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\cos \left(1 \\ \cos \left(1 \\ \cos \left(1 \right) \right] \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\cos \left(1 \\ \cos \left(1 \right) \right] \right] \\ \mathbf{V}^{c} \left[\left[\cos \left(1 \\ \cos \left(1 \right) \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\cos \left(1 \\ \cos \left(1 \right) \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\cos \left(1 \\ \cos \left(1 \right) \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\cos \left(1 \\ \cos \left(1 \right) \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\cos \left(1 \\ \cos \left(1 \right) \right] \right] \\ \mathbf{V}^{c} \left[\left[\left[\cos \left(1 \\ \cos \left(1 \right) \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\left[\cos \left(1 \\ \cos \left(1 \right) \right] \right] \right] \\ \mathbf{V}^{c} \left[\left[\left[\left[\cos \left(1 \\ \cos \left(1 \right) \right] \right] \right] \right] \\ \mathbf{V}^{c} \left[$		doublet	30.5 (150)	1	
$ I^{10} \qquad \begin{array}{c} \sin g \operatorname{let} & -22.7 & 1 \\ \operatorname{doublet} & -11.8 (140) & 3 \\ \operatorname{doublet} & 1.7 (150) & 2 \\ \operatorname{doublet} & 29.3 (150) & 1 \\ \operatorname{doublet} & 35.1 (151) & 1 \\ \end{array} \\ III^{4'} \qquad \begin{array}{c} \operatorname{doublet} & 0.8 (150) & 1 \\ \operatorname{doublet} & 21.4^{c} & 1 \\ \operatorname{doublet} & 21.4^{c} & 1 \\ \operatorname{doublet} & 33.6^{c} & 1 \\ \operatorname{doublet} & 34.8 & 1 \\ \end{array} \\ IV^{4'} \qquad \begin{array}{c} \operatorname{doublet} & 3.8^{c} & 1 \\ \operatorname{doublet} & 6.0^{c} & 1 \\ \operatorname{doublet} & 9.6 (170) & 1 \\ \operatorname{doublet} & 16.6^{c} & 1 \\ \operatorname{doublet} & 16.6^{c} & 1 \\ \operatorname{doublet} & 16.6^{c} & 1 \\ \operatorname{doublet} & 33.3^{c} & 1 \\ \end{array} \\ V^{b} \qquad \begin{array}{c} \operatorname{singlet} & -1.4 & 1 \\ \operatorname{doublet} & 12.2 (130) & 2 \\ \operatorname{doublet} & 15.1^{c} & 1 \\ \operatorname{doublet} & 15.1^{c} & 1 \\ \operatorname{doublet} & 23.6 (140) & 2 \\ \operatorname{singlet} & 33.3^{c} & 1 \\ \end{array} \\ V^{b} \qquad \begin{array}{c} \operatorname{singlet} & -1.4 & 1 \\ \operatorname{doublet} & 12.2 (130) & 2 \\ \operatorname{doublet} & 15.1^{c} & 1 \\ \operatorname{doublet} & 12.2 (130) & 2 \\ \operatorname{doublet} & 12.2 (130) & 2 \\ \operatorname{doublet} & 12.1 (10) & 1 \\ \end{array} \\ V^{l} \qquad \begin{array}{c} \operatorname{doublet} & 0.5 (135) & 2 \\ \operatorname{doublet} & 22.4^{c} & 1 \\ \operatorname{doublet} & 21.5 (140) & 1 \\ \end{array} \\ V^{l} \qquad \begin{array}{c} \operatorname{doublet} & 0.5 (135) & 2 \\ \operatorname{doublet} & 0.5 (135) & 2 \\ \operatorname{doublet} & 16.4 (115) & 3 \\ \operatorname{doublet} & 16.4 (115) & 1 \\ \operatorname{doublet} & 32.4 (150) & 1 \\ \end{array} \end{cases}$		doublet	38.2 (150)	1	
$ V^{d} = \begin{cases} singlet & -1.2, i & 1 \\ doublet & -1.3, (140) & 3 \\ doublet & -3.3, (150) & 2 \\ doublet & 29.3, (150) & 1 \\ doublet & 29.3, (150) & 1 \\ doublet & 35.1, (151) & 1 \end{cases} \\ \end{bmatrix} \\ III^{d} = \begin{cases} doublet & 1.8, (150) & 1 \\ doublet & 9.8, (150) & 1 \\ doublet & 17, 4^{c} & 2 \\ doublet & 21, 4^{c} & 1 \\ doublet & 24.0, (150) & 2 \\ doublet & 33.6^{c} & 1 \\ singlet & 34.8 & 1 \end{cases} \\ IV^{d} = \begin{cases} doublet & 3.8^{c} & 1 \\ doublet & 9.6, (170) & 1 \\ doublet & 16.6^{c} & 1 \\ doublet & 16.6^{c} & 1 \\ doublet & 16.6^{c} & 1 \\ doublet & 33.3^{c} & 1 \end{cases} \\ V^{b} = \begin{cases} singlet & -1.4 & 1 \\ doublet & 33.3^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 16.6^{c} & 1 \\ doublet & 23.6, (140) & 2 \\ singlet & 33.3^{c} & 1 \end{cases} \\ V^{b} = \begin{cases} singlet & -1.4 & 1 \\ doublet & 11.2, (130) & 2 \\ doublet & 17.1^{c} & 1 \\ doublet & 20.3^{c} & 1 \\ doublet & 22.4^{c} & 1 \\ doublet & 20.3^{c} & 1 \\ doublet & 36.0, (140) & 1 \end{cases}$ \\ VI^{d} = \begin{cases} doublet & 10.5, (135) & 2 \\ doublet & 16.4, (115) & 3 \\ doublet & 16.4, (115) & 3 \\ doublet & 16.4, (115) & 3 \\ doublet & 6 \\ doublet & 16.4, (115) & 1 \\ doublet & 16.4, (115) & 1 \\ doublet & 37.4, (130) & 1 \end{cases}	<u>п</u> b	cin al st	00 7		
V^{d} V^{d	11	singlet doublet		2	
$V^{b} \begin{cases} doublet & -3.3 (130) & 2 \\ doublet & 1.7 (150) & 2 \\ doublet & 29.3 (150) & 1 \\ doublet & 35.1 (151) & 1 \\ doublet & 35.1 (151) & 1 \\ doublet & 9.8 (150) & 1 \\ doublet & 17.4^{c} & 2 \\ doublet & 21.4^{c} & 1 \\ doublet & 24.0 (150) & 2 \\ doublet & 33.6^{c} & 1 \\ doublet & 3.8^{c} & 1 \\ doublet & 6.0^{c} & 1 \\ doublet & 9.6 (170) & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 23.6 (140) & 2 \\ sanglet & 32.0 & 1 \\ doublet & 15.2^{c} & 1 \\ doublet & 22.4^{c} & 1 \\ doublet & 22.4^{c} & 1 \\ doublet & 36.0 (140) & 1 \\ VI^{d} & doublet & 10.5 (135) & 2 \\ doublet & 10.5 (135) & 2 \\ doublet & 21.5 (140) & 2 \\ doublet & 10.5 (135) & 1 \\ doublet & 10.5 (135$		doublet		3	
$V^{d} = \begin{pmatrix} doublet & 1, 1, 1 (130) & 2 \\ doublet & 35.1 (151) & 1 \\ doublet & 35.1 (151) & 1 \\ doublet & 9,8 (150) & 1 \\ doublet & 9,8 (150) & 1 \\ doublet & 21.4^{C} & 1 \\ doublet & 21.4^{C} & 1 \\ doublet & 24.0 (150) & 2 \\ doublet & 33.6^{C} & 1 \\ doublet & 33.6^{C} & 1 \\ doublet & 6,0^{C} & 1 \\ doublet & 9,6 (170) & 1 \\ doublet & 15.1^{C} & 1 \\ doublet & 16.6^{C} & 1 \\ doublet & 16.6^{C} & 1 \\ doublet & 33.3^{C} & 1 \\ \end{pmatrix}$		doublet	-3.3 (150)	2	
V^{d} doublet doubl		doublet	1.7 (150)	2	
$ V^{0} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$		doublet	29.3 (150)	1	
$ \prod_{i}^{d} \qquad \begin{array}{c} \text{doublet} & 1.8 (150) & 1 \\ \text{doublet} & 9.8 (150) & 1 \\ \text{doublet} & 17.4^{C} & 2 \\ \text{doublet} & 21.4^{C} & 1 \\ \text{doublet} & 24.0 (150) & 2 \\ \text{doublet} & 33.6^{C} & 1 \\ \text{doublet} & 34.8 & 1 \\ \end{array} $		doubler	35.1 (151)	1	
$ V^{d} $ $ V^{$	III ^a	doublet	1.8 (150)	1	
$ V^{d} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$		doublet	9.8 (150)	1	
$ V^{d} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$		doublet	17.4 ^c	2	
$ V^{0} \\ V^{1} \\ V^{$		doublet	21.4 ^c	1	
doublet snglet 33.6^{c} 1 ΓV^{d} doublet 3.8^{c} 1doublet 6.0^{c} 1doublet 9.6 (170)1doublet 15.1^{c} 1doublet 16.6^{c} 1doublet 23.6 (140)2snglet 32.0 1doublet 15.1^{c} 1doublet 33.3^{c} 1 V^{b} singlet -1.4 1doublet 15.1^{c} 1doublet 15.1^{c} 1doublet 15.1^{c} 1doublet 22.4^{c} 1doublet 22.4^{c} 1doublet 28.9 (130)1doublet 10.5 (135)2doublet 16.4 (115)3doublet 21.5 (140)2uoublet of 21.5 (140)2doublet of 0.5 (135)2doublet of 0.5 (135)2doublet of 0.5 (135)1doublet of 0.5 (135)1doublet of 0.5 (140)1VI ^d doublet of 0.5 (135)1doublet of 0.5 (135)11doublet of 0.5 (135)1doublet of 0.5 (140)1		doublet	24.0 (150)	2	
snglet34.81 IV^d doublet 3.8^c 1doublet 6.0^c 1doublet 9.6 (170)1doublet 15.1^c 1doublet 16.6^c 1doublet 23.6 (140)2snglet 32.0 1doublet 15.1^c 1doublet 23.6 (140)2snglet 32.0 1doublet 15.1^c 1doublet 15.1^c 1doublet 17.1^c 1doublet 17.1^c 1doublet 22.4^c 1doublet 28.9 (130)1doublet of 36.0 (140)1VI ^d doublet 10.5 (135)2doublet 16.4 (115)3doublet of 40.4 (15)3doublet of 60.0 (140)1VI ^d doublet 32.4 (115)1doublet of 41.5 (140)2doublet of 41.5 (140)2doublet of 40.4 (115)3doublet of $40.006.00000000000000000000000000000000$		doublet	33.6 ^c	1	
$ {\bf V}^a \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$		singlet	34.8	1	
$V^{b} = \begin{cases} doublet & 6.0^{c} & 1 \\ doublet & 9.6 (170) & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 16.6^{c} & 1 \\ doublet & 23.6 (140) & 2 \\ singlet & 33.3^{c} & 1 \\ \end{cases}$ $V^{b} = \begin{cases} singlet & -1.4 & 1 \\ doublet & 11.2 (130) & 2 \\ doublet & 15.1^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 22.4^{c} & 1 \\ doublet & 20.3^{c} & 1 \\ doublet & 22.4^{c} & 1 \\ doublet & 28.9 (130) \\ doublet & 36.0 (140) & 1 \\ \end{cases}$ $VI^{a} = \begin{cases} doublet & 10.5 (135) & 2 \\ doublet & 16.4 (115) & 3 \\ doublet & 16.4 (115) & 3 \\ doublet & 32.4 (115) & 1 \\ doublet & 37.4 (130) & 1 \\ \end{cases}$	rva	doublet	3.8°	1	
$V^{b} = \begin{bmatrix} v^{b} & v^{b} & v^{b} \\ doublet & 9.6 (170) & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 16.6^{c} & 1 \\ doublet & 23.6 (140) & 2 \\ singlet & 32.0 & 1 \\ doublet & 33.3^{c} & 1 \end{bmatrix}$ $V^{b} = \begin{bmatrix} singlet & -1.4 & 1 \\ doublet & 11.2 (130) & 2 \\ doublet & 15.1^{c} & 1 \\ doublet & 17.1^{c} & 1 \\ doublet & 17.1^{c} & 1 \\ doublet & 20.3^{c} & 1 \\ doublet & 22.4^{c} & 1 \\ doublet & 28.9 (130) \\ doublet & 36.0 (140) & 1 \end{bmatrix}$ $VI^{a} = \begin{bmatrix} doublet & 10.5 (135) & 2 \\ doublet & 16.4 (115) & 3 \\ doublet & 16.4 (115) & 3 \\ doublet & 37.4 (130) & 1 \end{bmatrix}$		doublet	6 0 [°]	1	
$V^{b} = \begin{cases} doublet & 15.1^{c} & 1 \\ doublet & 16.6^{c} & 1 \\ doublet & 23.6 (140) & 2 \\ singlet & 32.0 & 1 \\ doublet & 33.3^{c} & 1 \end{cases}$ $V^{b} = \begin{cases} singlet & -1.4 & 1 \\ doublet & 11.2 (130) & 2 \\ doublet & 15.1^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 17.1^{c} & 1 \\ doublet & 20.3^{c} & 1 \\ doublet & 22.4^{c} & 1 \\ doublet & 22.4^{c} & 1 \\ doublet & 36.0 (140) & 1 \end{cases}$ $VI^{a} = \begin{cases} doublet & 10.5 (135) & 2 \\ doublet & 16.4 (115) & 3 \\ doublet & 21.5 (140) & 2 \\ doublet & 37.4 (130) & 1 \end{cases}$		doublet	96(170)	-	
$V^{b} = \begin{bmatrix} doublet & 16.6^{c} & 1 \\ doublet & 23.6 (140) & 2 \\ sanglet & 32.0 & 1 \\ doublet & 33.3^{c} & 1 \end{bmatrix}$ $V^{b} = \begin{bmatrix} singlet & -1.4 & 1 \\ doublet & 11.2 (130) & 2 \\ doublet & 15.1^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 20.3^{c} & 1 \\ doublet & 22.4^{c} & 1 \\ doublet & 22.4^{c} & 1 \\ doublet & 36.0 (140) & 1 \end{bmatrix}$ $VI^{a} = \begin{bmatrix} doublet & 10.5 (135) & 2 \\ doublet & 16.4 (115) & 3 \\ doublet & 21.5 (140) & 2 \\ doublet & 37.4 (130) & 1 \end{bmatrix}$		doublet	15 19	î	
$V^{b} = \begin{cases} doublet & 23.6 (140) & 2 \\ snglet & 32.0 & 1 \\ doublet & 33.3^{c} & 1 \end{cases}$ $V^{b} = \begin{cases} singlet & -1.4 & 1 \\ doublet & 11.2 (130) & 2 \\ doublet & 15.1^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 20.3^{c} & 1 \\ doublet & 20.3^{c} & 1 \\ doublet & 22.4^{c} & 1 \\ doublet & 36.0 (140) & 1 \end{cases}$ $VI^{a} = \begin{cases} doublet & 10.5 (135) & 2 \\ doublet & 16.4 (115) & 3 \\ doublet & 16.4 (115) & 3 \\ doublet & 37.4 (130) & 1 \end{cases}$		doublet	16 6 [°]	ī	
$V^{b} = \begin{cases} doublet & 23.0 & 1 \\ doublet & 33.3^{c} & 1 \\ \\ doublet & 11.2 & (130) & 2 \\ doublet & 15.1^{c} & 1 \\ doublet & 15.1^{c} & 1 \\ doublet & 20.3^{c} & 1 \\ doublet & 22.4^{c} & 1 \\ doublet & 22.4^{c} & 1 \\ doublet & 28.9 & (130) \\ doublet & 36.0 & (140) & 1 \\ \end{cases}$		doublet	23.6 (140)	2	
$V^{b} = \begin{cases} angle t & b2.0 & 1 \\ double t & 33.3^{c} & 1 \\ double t & 13.3^{c} & 1 \\ double t & 11.2 (130) & 2 \\ double t & 15.1^{c} & 1 \\ double t & 15.1^{c} & 1 \\ double t & 20.3^{c} & 1 \\ double t & 22.4^{c} & 1 \\ double t & 22.4^{c} & 1 \\ double t & 36.0 (140) & 1 \\ \end{cases}$		anglet	39.0	- 1	
$V^{b} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$		doublet	33.3	1	
V ^D singlet -1.4 1 doublet 11.2 (130) 2 doublet 15.1 ^c 1 doublet 17.1 ^c 1 doublet 20.3 ^c 1 doublet 22.4 ^c 1 doublet of 1 1 doublet 28.9 (130) 1 doublet 36.0 (140) 1 VI ^Q doublet 10.5 (135) 2 doublet 16.4 (115) 3 doublet of 21.5 (140) 2 doublet of 32.4 (115) 1 doublets 37.4 (130) 1				_	
doublet 11.2 (130) 2 doublet 15.1 ^c 1 doublet 17.1 ^c 1 doublet 20.3 ^c 1 doublet 22.4 ^c 1 doublet of 1 doublet 36.0 (140) 1 VI ^a doublet 10.5 (135) 2 doublet 16.4 (115) 3 doublet of 21.5 (140) 2 doublet 32.4 (115) 1 doublet 37.4 (130) 1	v	singlet	-1.4	1	
$VI^{\alpha} \begin{array}{cccccccccccccccccccccccccccccccccccc$		doublet	11.2 (130)	2	
doublet 17.1° 1 doublet 20.3° 1 doublet 22.4° 1 doublet of 1 1 doublets 28.9 (130) 1 doublet 36.0 (140) 1 VI ^a doublet 10.5 (135) 2 doublet 16.4 (115) 3 doublet of 21.5 (140) 2 doublet of 32.4 (115) 1 doublet 37.4 (130) 1		doublet	15.1	1	
doublet 20.3° 1 doublet 22.4° 1 doublet of 1 doublets 28.9 (130) doublet 36.0 (140) 1 VI ^a doublet 10.5 (135) 2 doublet 16.4 (115) 3 doublet of 21.5 (140) 2 doublet of 32.4 (115) 1 doublet 37.4 (130) 1		doublet	17.10	1	
doublet 22.4° 1 doublet of 1 doublets 28.9 (130) doublet 36.0 (140) 1 VI ^a doublet 10.5 (135) 2 doublet 16.4 (115) 3 doublet of 21.5 (140) 2 doublet of 32.4 (115) 1 doublet 37.4 (130) 1		doublet	20.3	1	
doublet of 1 doublets 28.9 (130) doublet 36.0 (140) 1 VI ^a doublet 10.5 (135) 2 doublet 16.4 (115) 3 doublet of 21.5 (140) 2 doublet of 4000 1 doublets 32.4 (115) 1 doublet 37.4 (130) 1		doublet	22.45	1	
doublets 28.9 (130) doublet 36.0 (140) 1 VI ⁰ doublet 10.5 (135) 2 doublet 16.4 (115) 3 doublet of 2 4 doublets 32.4 (115) 1 doublet 37.4 (130) 1		doublet of		1	
doublet 35.0 (140) 1 VI ^a doublet 10.5 (135) 2 doublet 16.4 (115) 3 doublet 21.5 (140) 2 doublet of		doublets	28.9 (130)	_	
VI ^a doublet 10.5 (135) 2 doublet 16.4 (115) 3 doublet 21.5 (140) 2 doublet of 4000000000000000000000000000000000000		doublet	36.0 (140)	1	
doublet 16.4 (115) 3 doublet 21.5 (140) 2 doublet of 32.4 (115) 1 doublets 37.4 (130) 1	via	doublet	10.5 (135)	2	
doublet 21.5 (140) 2 doublet of		doublet	16.4 (115)	3	
doublet of doublets 32.4 (115) doublet 37.4 (130)		doublet	21.5 (140)	2	
doublets 32.4 (115) 1 doublet 37.4 (130) 1		doublet of			
doublet 37.4 (130) 1		doublets	32.4 (115)	1	
		doublet	37.4 (130)	1	

^a Methylene chloride solvent. ^b Acetone solvent. ^c Coupling constant could not be obtained due to overlap of resonances.

T/	AB	L	Е	4
_		_		_

INFRARED SPECTRA

Compound	Wave number (cm ⁻¹) ^a			
I	3100w, 2900w, 2590vs, 2545vs, 2000vs, 1955vs,			
	1450w, 1090w, 1020m, 950w, 892m, 850s, 818m, 775w			
ц	3080w, 2980w, 2595vs, 2550vs, 2050vs, 2000vs,			
	1465w, 1390m, 1250m, 1000w, 850s, 808m			
m	3110w, 2985w, 2550vs, 2520vs, 2060vs, 2000vs,			
	1440s, 1400(sh), 1085w, 1060w, 1035(sh), 1020s,			
	1000(sb), 990 8535, 800m			
IV	3100w, 2980w, 2550vs, 2060vs, 2005vs, 1450w,			
	1420w, 1260w, 1018s, 865s, 800m			
v	3150w, 2900w, 2515vs, 1965vs, 1900vs, 1498s,			
	1425m, 1270w, 1108w, 1080m, 1045m, 1008m,			
	960s, 830s, 750m			
vī	3085w, 2980w, 2950w, 2510vs, 2080vs, 2040vs,			
	1420s, 1080m, 1025s, 855s, 800m			
VII	3100w, 2970w, 2850s, 2800m, 2510vs, 2200vs,			
	2180vs, 2150s, 2005vs, 1465s, 1440m, 1370s,			
	1360m, 1340s, 1330m, 1025s, 865s			

^a Obtained as KBr disk.

$(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}B_{10}H_{13}(I)$

Treatment of $B_{10}H_{14}$ (0.134 g, 1.1 mmole) with sodium hydride (0.024 g, 1.0 mmole) in 30 ml diethyl ether at room temperature generated NaB₁₀H₁₃ after stirring for 0.5 h. To this solution was added $[(\eta^5 \cdot C_5H_5)Fe(CO)_2(cyclo-hexene)]PF_6$ (0.33 g, 0.82 mmole) and the mixture was stirred at room temperature for 5 h. The solvent was removed under vacuum and the residue chromatographed on a silica gel column with CH₂Cl₂ as eluent yielding a fast moving yellow band. This material was crystallized from CH₂Cl₂/hexane to give 0.098 g (40% yield) of $(\eta^5 \cdot C_5H_5)Fe(CO)_2B_{10}H_{13}$ which decomposed above 153°C. The elemental analysis of this compound is given in Table 1 and the infrared spectral data in Table 4.

$(\eta^{5}-C_{5}H_{4}B_{10}H_{13})Fe(CO)_{2}Br(II)$

A solution of bromine (0.04 g, 0.25 mmole) in 5 ml of CH_2Cl_2 was added dropwise to a solution of (η^5 -C₅H₅)Fe(CO)₂B₁₀H₁₃ (0.067 g, 0.22 mmole) in 45 ml CH₂Cl₂ maintained at about -20°C. After addition, the mixture was stirred at 0°C for 20 minutes and then at room temperature for another 0.5 h. The solvent was removed under vacuum and the residue crystallized from CH₂Cl₂/ hexane to give 0.081 g (96% yield) of red-brown (η^5 -C₅H₄B₁₀H₁₃)Fe(CO)₂Br, m.p. 144-145°C (dec.). $(\eta^{s} \cdot C_{s}H_{5})Fe(CO)_{2}(7, 8 \cdot B_{9}C_{2}H_{12})$ (III)

A solution containing $[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}(cyclohexene)]FF_{6}$ (0.40 g, 1 mmole) and $(CH_{3})_{3}NH[7,8-B_{9}C_{2}H_{12}]$ (0.25 g, 1.29 mmole) in 50 ml acetone was stirred at reflux for 1 h. The solution was evaporated to dryness under vacuum and the residue chromatographed on a silica gel column. Elution with $CH_{2}Cl_{2}$ gave a fast moving red-orange band which was evaporated to dryness and crystallized from $CH_{2}Cl_{2}/hexane$ to give 0.28 g (90% yield) of red-brown $(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}(7,8-B_{9}C_{2}H_{12})$ which decomposed above 155°C.

Using the same procedure red $(\eta^5 - C_5 H_5)Fe(CO)_2[7,8-B_9H_{10}C_2(CH_3)_2]$ (IV) was obtained in 85% yield. This compound decomposed above 170°C.

$(CH_{3})_{4}N[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}(7,8-B_{9}C_{2}H_{11})](V)$

Trimethylamine was bubbled into a solution of III (0.20 g, 0.65 mmole) in 20 ml of CH₂Cl₂ at room temperature. The color of the solution changed rapidly from red to yellow. The solvent was removed under vacuum and the residue was washed with water and this gave 0.21 g (88% yield) of impure $(CH_3)_3NH[(\eta^5-C_5H_5)Fe(CO)_2(7,8-B_9C_2H_{11})]$. The trimethylammonium salt (0.15 g, 0.41 mmole) was dissolved in 20 ml of methanolic 0.045 N KOH solution and the mixture was allowed to stand at room temperature for 1 h. The solvent was removed under vacuum. The residue was dissolved in 80 ml of water and this solution added thru a filter to 20 ml of saturated aqueous tetramethylammonium chloride solution. This gave a yellow precipitate which was collected and crystallized from acetone/H₂O to give 0.138 g (88% yield) of yellow $(CH_3)_4N[(\eta^5-C_5H_5)Fe(CO)_2(7,8-B_9C_2H_{11})]$ which decomposed above 170°C.

Reaction of $K[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}(B_{9}C_{2}H_{11})]$ and HCl

Treatment of $(CH_3)_3NH[(\eta^5-C_5H_5)Fe(CO)_2B_9C_2H_{11}]$ (0.10 g, 0.27 mmole) with KOH (0.045 g, 0.80 mmole) in 20 ml of methanol generated the potassium salt which was isolated by removing the solvent under vacuum. The salt was dissolved in 30 ml of H₂O and 20 ml of CH₂Cl₂ added to the solution. This two layer system was treated with 10 ml of 1 N aqueous HCl and shaken. Very rapidly the CH₂Cl₂ layer became red. The CH₂Cl₂ layer was separated and the solvent removed under vacuum. The residue was chromatographed on silica gel with CH₂Cl₂ as eluent and crystallized from CH₂Cl₂/hexane to give 0.05 g (59% yield) of $(\eta^5-C_5H_5)Fe(CO)_2(7,8-B_9C_2H_{12})$ which shows the same infrared and ¹¹B NMR spectra as the authentic sample.

$[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}CH_{3}CN](7,8-B_{9}C_{2}H_{12})(VI)$

(Method a). A solution of $(\eta^5-C_5H_5)Fe(CO)_2(7,8-B_9C_2H_{12})$ (0.14 g, 0.45 mmole) in 30 ml of CH₃CN was refluxed for 1 h at which point the solution was green-yellow in color. The solvent was removed under vacuum and the residue crystallized from CH₂Cl₂/hexane to give 0.151 g (96% yield) of yellow $[(\eta^5-C_5H_5)Fe(CO)_2CH_3CN](7,8-B_9C_2H_{12}), m.p. 134-136^{\circ}C$ (dec.).

In a similar manner III was treated with PPh₃ in benzene at reflux for 1 h to form $[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}PPh_{3}](7,8-B_{9}C_{2}H_{12})$ in 94% yield.

(Method b). A solution of $[(\eta^5-C_5H_5)Fe(CO)_2CH_3CN]PF_6$ (0.32 g, 0.88 mmole) and $[HN(CH_3)_3](7,8-B_9C_2H_{12})$ (0.23 g, 1.2 mmole) in 50 ml of acetone was refluxed for 3 h. The solvent was removed under vacuum and the residue

crystallized from CH₂Cl₂/hexane to give 0.284 g (92% yield) of $[(\eta^{5}-C_{5}H_{5})Fe-(CO)_{2}CH_{3}CN](7,8-B_{9}C_{2}H_{12}).$

$[(\eta^{5}-C_{5}H_{5})Fe(CO)(CNC_{6}H_{11})_{2}](7,8-B_{9}C_{2}H_{12})(VII)$

A mixture of $(\eta^5 \cdot C_5 H_5)$ Fe(CO)₂(7,8-B₉C₂H₁₂) (0.200 g, 0.65 mmole) and CNC₆H₁₁ (1 g, 9.2 mmole) in 30 ml of benzene was refluxed for 1 h. The solvent was removed under vacuum and the residue crystallized from CH₂Cl₂/hexane to give 0.29 g (89% yield) of yellow $[(\eta^5 \cdot C_5 H_5)$ Fe(CO)(CNC₆H₁₁)₂](7,8-B₉C₂H₁₂) m.p. 150-152°C. The ¹³C NMR (acetone solvent) δ 212.6 (CO), 148.8 [CN(cyclohexyl)], 85.8 (C₅H₅), 56.7 (C(1) of cyclohexyl group), 41.8 (carborane carbons, broad), 32.7, 25.3 and 23.1 ppm (C(2), C(3), C(4) of cyclohexyl group).

Results and discussion

Chemistry of the $B_{10}H_{13}$ ligand

In a previous report of the reaction of the cationic complex $[(\eta^5 - C_5 H_5)Fe-(CO)_3]BPh_4$ with sodium borohydride the final product of the reaction was found to be $[(\eta^5 - C_5 H_5)Fe(CO)_2]_2$ [5]. It was assumed that the product was formed by the sequence of reactions 1 and 2. It was therefore interesting to find that

 $[(\eta^{5}-C_{5}H_{5})Fe(CO)_{3}]BPh_{4} + NaBH_{4} \rightarrow$

$$(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}H + CO + NaBPh_{4} + BH_{3}$$
(1)

$$2(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}H \to H_{2} + [(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}]_{2}$$
(2)

treatment of an ether solution of NaB₁₀H₁₃ with $[(\eta^5-C_5H_5)Fe(CO)_2(cyclohexene)]$ -PF₆ at room temperature formed yellow 6- $[(\eta^5-C_5H_5)Fe(CO)_2]B_{10}H_{13}$ (1) in 40% yield. In addition to the elemental analysis (Table 1) which supports this formula, the low resolution mass spectrum cuts off at *m/e* 301 corresponding to the $[{}^{12}C_6{}^{13}C_1{}^{1}H_{18}{}^{11}B_{10}{}^{16}O_2{}^{56}Fe_1]^+$ parent ion. The ¹H NMR spectrum of I contains a singlet at τ 4.94 ppm and a broad peak at τ 11.6 ppm which can be assigned to the cyclopentadienyl and B–H–B bridge protons respectively. The 70.6 MHz ¹¹B NMR spectrum of I exhibits a 1/2/1/4/1/1 pattern of resonances reading from low to high field (see Table 3). The chemical shift pattern of I is quite similar to that of 6-isothiocyanodecaborane [6], 6-benzyldecaborane [7] and 6-phenyldecaborane [7]. The very low field position of the iron-substituted boron resonance (-40.8 ppm) is noteworthy. Thus the available data are consistent with our proposal that an iron-boron single bond has been formed at B(6) of the decaborane cage as illustrated in Fig. 1.

In an attempt to break the iron—boron bond and form 6-BrB₁₀H₁₃, I was treated with bromine at -20° C which formed (η -C₅H₄B₁₀H₁₃)Fe(CO)₂Br (II) in high yield. This formula was supported by the elemental analysis and the low resolution mass spectrum which cut off at m/e 381 corresponding to the $[^{12}C_{6}^{13}C_{1}^{1}H_{17}^{11}B_{10}^{16}O_{2}^{81}Br_{1}^{56}Fe_{1}]^{+}$ parent ion. This interesting type of rearrangement has been observed previously in reaction 3, where the substitution is at B(3) of the carboranyl group [8]. The ¹H NMR spectrum of II contained two triplet signals of equal intensity at τ 4.33 and 5.45 ppm which is characteristic

Fig. 1. Proposed structure for 6-[$(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}B_{10}H_{13}$ (terminal and bidge hydrogen atoms have been omitted for clarity).

of a monosubstituted-*pentahapto*-cyclopentadienyl ring. The ''B NMR spectrum of II exhibited a 1/3/2/2/1/1 pattern, reading from low to high field, which is similar to that of compound I. In this case the singlet resonance attributed to the cyclopentadienyl-substituted boron atom is at -22.7 ppm. We suggest that the carbon-boron single bond in II has been formed at B(6) of the decaborane cage which is consistent with the available data.

Treatment of compound I in benzene with triethylamine at room temperature rapidly forms dimeric $[(\eta^5 \cdot C_5 H_5)Fe(CO)_2]_2$ in high yield. The only boron compound we could isolate was $[(C_2 H_5)_3 NH)]_2 B_{10} H_{10}$ which was obtained in about 10% yield.

Chemistry of the 7,8-B₉H₁₀C₂R₂ ligand ($R = H \text{ or } CH_3$)

There have been several previous reports concerning the synthesis of $(\eta^5 \cdot C_5 H_5)Fe(CO)_2(\text{carborane})$ derivatives. Treatment of $(\eta^5 \cdot C_5 H_5)Fe(CO)_2I$ with 1-Li-2·CH₃-1,2·C₂B₁₀H₁₀ or 1-Li-10·CH₃-1,10·C₂B₈H₈ afforded 1-[$(\eta^5 \cdot C_5 H_5)Fe(CO)_2$]-2·CH₃-1,2·C₂B₁₀H₁₀ or 1-[$(\eta^5 \cdot C_5 H_5)Fe(CO)_2$]-10·CH₃-1,10·C₂B₈H₈ respectively [9]. These are derivatives containing an iron—carbon single bond. Treatment of $(\eta^5 \cdot C_5 H_5)Fe(CO)_2I$ with the [2,3·C₂B₄H₇]⁻ ion generated $(\eta^5 \cdot C_5 H_5)Fe(CO)_2(2,3 \cdot C_2 B_4 H_7)$ in which a B—Fe—B three-center two-electron bond was proposed based on available ¹H and ¹¹B NMR data [10].

We have found that treatment of $(CH_3)_3NH[7,8-B_9H_{10}C_2R_2]$ (R = H or CH₃) at reflux in acetone solution with $[(\eta^5-C_5H_5)Fe(CO)_2(cyclohexene)]PF_6$ forms $(\eta^5-C_5H_5)Fe(CO)_2(7,8-B_9H_{10}C_2H_2)$ (III) and $(\eta^5-C_5H_5)Fe(CO)_2$ - $[7,8-B_9H_{10}C_2(CH_3)_2]$ (IV) in 90 and 85% yields respectively. The low resolution

Fig. 2. Proposed structures for 9-[$(\eta^5-C_5H_5)$ Fe(CO)₂]-7,8-B₉C₂H₁₂ and $\{9\cdot[(\eta^5-C_5H_5)$ Fe(CO)₂]-7,8-B₉C₂H₁₁ $\}^-$ (terminal and bridge hydrogen atoms have been omitted for clarity).

mass spectrum of III cut off at m/e 313 which corresponds to the $[{}^{12}C_8{}^{13}C_1{}^{1}H_{17}{}^{11}B_9{}^{16}C_7{}^{56}Fe_1]^{\dagger}$ parent ion. The presence of two broad singlet resonances in the ¹H NMR spectrum for the carborane CH protons of III and two CH₃ signals in the ¹H NMR spectrum of IV suggests that the n^{5} -C₅H₅Fe(CO), moiety is attached to the carborane framework in these molecules at a position which is off the mirror plane of the cage. The ¹¹B NMR spectra of III and IV exhibit high field singlets which can be attributed to the iron-bonded boron atoms. The ¹¹B NMR spectra of III and IV appear to be like the ¹¹B NMR. spectrum of $B_0C_2H_{13}$ which has been reported previously [11]. The ¹¹B NMR spectrum of 7,8-B₉ C_2H_{13} exhibits secondary splitting of a doublet at high field due to spin coupling with the bridge hydrogens [11]. This resonance can be assigned to the boron atoms in the open face of the carborane cage which are adjacent to the carbon atoms [B(9), B(11) in Fig. 2]. Application of proton bridge decoupling to the ¹¹B NMR spectrum of III indicated that the singlet resonance at 34.8 ppm experiences proton spin-spin splitting due to the proximity of a bridge hydrogen. Thus it is seen that the ¹¹B NMR spectra of 7,8-B₉C₂H₁₃, III and IV have certain interesting similarities.

Like 7,8-B₉C₂H₁₃ which can be readily deprotonated, we have found that III upon treatment with trimethylamine readily forms the trimethylammonium salt of {[$(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}$]-7,8-B₉C₂H₁₁}. This salt was converted to (CH₃)₄N[$(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}(7,8-B_{9}C_{2}H_{11})$] (V) because it was easier to characterize by elemental analysis (see Table 1). In addition we found that treatment of K[$(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}(7,8-B_{9}C_{2}H_{11})$] with aqueous HCl in an H₂O/CH₂Cl₂ twolayer medium rapidly reformed red III in the CH₂Cl₂ layer.

The ¹¹B NMR spectrum of V has the characteristic pattern of a boron-substituted 7,8-B₉C₂H₁₂⁻ ion. The doublet of doublets resonance centered at 28.9 ppm is due to the boron atom on the open face of the carborane cage which is not adjacent to a carbon atom as has been determined by a previous ¹¹B NMR study [11]. The presence of eight observable resonances in the ¹¹B NMR spectrum of V indicates that substitution of the $(\eta^5-C_5H_5)Fe(CO)_2$ group is at a position off the mirror plane of the carborane cage. Thus analysis of the ¹¹B NMR spectra of both III and its deprotonation product V lead us to propose that these complexes are best described as substituted $7,8-B_9C_2H_{13}$ and $7,8-B_9C_2H_{12}^-$ derivatives respectively in which the iron—boron single bond is located at B(9) as illustrated in Fig. 2. To date only one other metal derivative of this type has been reported. Mikhailov and Potapova reported the synthesis of $(CH_3)_4N[7,8-B_9C_2H_{11})HgC_6H_5]$ by reaction of C_6H_5HgCl with $Na_2[7,8-B_9C_2H_{11}]$ [12]. They proposed that a mercury—carbon single bond was formed in this reaction but little structural data was presented in their report to substantiate this postulate.

During the course of our study we found that certain neutral Lewis bases are capable of displacing the 7,8-B₉C₂H₁₂⁻ ion from the coordination sphere of the iron atom. Treatment of III with acetonitrile at reflux forms $[(\eta^5 \cdot C_5H_5)Fe(CO)_2CH_3CN](7,8-B_9C_2H_{12})$ (VI) in high yield. This product was obtained alternately by heating a mixture of $[(\eta^5 \cdot C_5H_5)Fe(CO)_2CH_3CN]PF_6$ and $(CH_3)_3NH[7,8-B_9C_2H_{12}]$ in refluxing acetone. The 70.6 MHz ¹¹B NMR spectrum of VI was nearly identical to the ¹¹B NMR spectrum of $(CH_3)_3NH[7,8-B_9-C_2H_{12}]$ reported previously [11]. Similar carborane displacement reactions were observed with other Lewis bases (eqns. 4, 5).

$$III + PPh_3 \xrightarrow[reflux]{C_6H_6} [(\eta^5 - C_5H_5)Fe(CO)_2PPh_3](7, 8 - B_9C_2H_{12})$$
(4)

III + C₆H₁₁NC
$$\xrightarrow{C_6H_6}_{\text{reflux}}$$
 [(η^5 -C₅H₅)Fe(CO)(C₆H₁₁NC)₂](7,8-B₉C₂H₁₂) (5)

Further chemical studies of these interesting metalloborane derivatives are underway and will be reported in the near future.

Acknowledgements

The authors gratefully acknowledge the support of this research by the National Science Foundation through Grant GP-42757. The authors thank Dr. A. Ron Garber and Mr. William Wright for obtaining the ¹¹B NMR spectra.

References

- 1 T. Yamamoto and L.J. Todd, J. Organometal. Chem., 67 (1974) 75.
- 2 E.O. Fischer and E. Moser, Inorg. Syn., 12 (1970) 38.
- 3 W.E. Williams and F.J. Lalor, J. Chem. Soc. Dalton, (1973) 1329.
- 4 M.F. Hawthome, D.C. Young, P.M. Garrett, D.A. Owen, S.G. Schwerin, F.N. Tebbe and P.A. Wegner, J. Amer. Chem. Soc., 90 (1968) 862.
- 5 A. Davidson, M.L.H. Green and G. Wilkinson, J. Chem. Soc., (1961) 3172.
- 6 B. Stibr, J. Plesek, F. Hanousek and S. Hermanek, Coll. Czech. Chem. Commun., 36 (1971) 1794.
- 7 A.R. Siedle, D. McDowell and L.J. Todd, Inorg. Chem., 13 (1974) 2735.
- 8 L.I. Zakharkin, L.V. Orlova, B.V. Lokshin and L.A. Fedorov, J. Organometal. Chem., 40 (1972) 15.
- 9 D.A. Owen, J.C. Smart, P.M. Garrett and M.F. Hawthorne, J. Amer. Chem. Soc., 93 (1971) 1362.
- 10 L.G. Sneddon and R.N. Gnmes, J. Amer. Chem. Soc., 94 (1972) 7161.
- 11 A.R. Siedle, G.M. Bodner and L.J. Todd, J. Organometal. Chem., 33 (1971) 137.
- 12 B.M. Mikhailov and T.V. Potapova, Izv. Akad. Nauk, SSSR, Ser. Khim., 11 (1970) 2634.